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We investigate the uptake of a passive solute through the walls of a pulsating, fluid-
filled channel into an adjacent medium in which the solute diffuses and is consumed
at a constant rate. One end of the channel is open to well-mixed fluid containing the
solute. The channel walls oscillate periodically in time and this prescribed motion
generates steady streaming within the channel. We determine how this flow enhances
the overall solute consumption (i.e. the flux of solute into the channel), the solute
dispersion along the channel and the quantity of solute in the adjacent medium.
The solute disperses in the channel due to the interaction between advection and
transverse diffusion. The time-mean solute distribution throughout the channel and
the medium is determined for a wide range of parameters. The results are applied to
a new surgical technique used to treat patients with severe coronary artery disease,
in which narrow tubes are created within ischemic heart muscle in an attempt to
reperfuse the area directly with oxygenated blood.

1. Introduction
Transmyocardial laser revascularisation (TMLR) is used to treat patients with

severe coronary artery disease. Although procedures such as coronary angioplasty
and coronary artery bypass grafting are proven methods of treating heart disease,
many patients have conditions that are not amenable to these therapies. TMLR
was proposed as a means of bypassing the coronary circulation altogether, instead
perfusing the myocardium (heart muscle) with oxygenated blood directly from the
left-ventricular chamber, in a manner similar to embryonic and reptilian cardiac
circulations. Using a laser (carbon dioxide or holmium), 10 to 50 narrow tunnels are
drilled in the left-ventricular myocardium, which are closed at the epicardial surface
and open to the left-ventricular cavity at the endocardial surface. The tunnels are
typically ∼ 1 mm in diameter and are created ∼ 1 cm apart (Horvath et al. 1995).

Much controversy surrounds the efficacy of this procedure (Pretre & Turina 1999).
The success of any type of myocardial revascularisation lies in the improvement in
the delivery of oxygenated blood to the ischemic area, providing relief from angina.
Although the exact mechanism of TMLR is unknown, improved perfusion and relief
of symptoms after treatment could result from patent (open) tunnels created by the
laser or from laser-induced angiogenesis. While some studies have found evidence of
tunnel patency and of angiogenesis (Frazier, March & Horvath 1999 and references
therein; Kadipasaoglu et al. 1997; Berwing et al. 1997) others have failed to find
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such evidence (Hardy et al. 1987; Landreneau et al. 1991; Mueller et al. 1998).
Schofield et al. (1999) found no evidence of improved cardiac function or myocardial
perfusion, although they did find that the treatment provided relief from angina
symptoms. Critics of TMLR have suggested that the decrease in the severity of
angina symptoms may be a placebo effect (Lange & Hillis 1999). The conflict in the
results of the clinical studies may be due to the variety of experimental models and
differences in the various physical parameters of the laser, such as its energy and pulse
duration. If the treatment is to be effective in the future, it is necessary to determine
the underlying mechanisms involved.

In the first few months after treatment, it is possible that blood flow through
patent tunnels plays an important role in the efficacy of the treatment (Horvath et
al. 1995). We hypothesize that this blood flow enhances the quantity of oxygenated
blood drawn into the tunnel and the subsequent delivery of oxygen to the tissue.
Since the tunnels are within the heart muscle, their overall geometry, represented by
the tunnel diameter and length, changes with time as the heart beats. This tunnel
wall motion will result in a fluid flow, the details of which depend on the precise
nature of the wall motion and the tunnel geometry. The quantity and distribution
of oxygen in the tunnel and its transport into the surrounding ischemic tissue will
then be determined by its molecular diffusivity, the blood flow within the tunnel, the
tunnel wall permeability and the rate of oxygen consumption within the tissue.

When a passive solute is injected into fluid flowing along a tube or channel,
it spreads out along the tube in the direction of the flow owing to (i) longitudinal
molecular diffusion and (ii) the interaction between advection and transverse diffusion.
The dispersion of a bolus of diffusing solute in a fluid flowing along a long, rigid, cylin-
drical, impermeable tube was first studied by Taylor (1953) and Aris (1956), who gen-
eralized Taylor’s results. Taylor showed that the longitudinal spreading of the solute
is enhanced because of the non-uniform velocity profile and limited by lateral mixing.

Following Taylor’s paper, a wide variety of dispersion problems has been analysed.
Dispersion in a long, rigid, straight, impermeable tube or channel when the flow
is driven by an oscillatory axial pressure gradient has been studied by Harris &
Goren (1967), Chatwin (1975) and Watson (1983). Hydon & Pedley (1993) analysed
solute transport through a fluid within a long, but finite, channel or pipe, whose
impermeable walls remain parallel but oscillate transversely. These authors assumed
that away from the ends of the channel the flow will be very closely approximated
by the flow in an infinitely long, parallel-sided channel with identical transverse wall
motion, as analysed by Secomb (1978). They calculated the axial dispersion of the
solute over a wide parameter range and found the mean longitudinal transport to
be greatly enhanced when the steady streaming Reynolds number (defined below) is
much greater than unity.

Mass transfer between a flowing fluid and an adjacent stationary medium can
greatly alter the overall solute dispersion. A number of workers have investigated the
effect of boundary absorption or a catalytic wall reaction on shear dispersion (Pur-
nama 1995; Mazumder & Das 1992; Phillips & Kaye 1998), but without considering
the influence of solute consumption within the adjacent stationary medium.

To determine how the blood flow, driven by the wall motion of the laser-created
tunnels, enhances the delivery of oxygen to the surrounding ischemic tissue, we
develop the following idealized, two-dimensional model. The blood is assumed to be
a homogeneous, incompressible, Newtonian fluid and the oxygen is modelled as a
passive solute. The tissue is assumed to be a homogeneous medium in which the
solute diffuses and is consumed at a constant rate. Since the tunnels are narrow
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and spaced relatively far apart, we consider a single tunnel in a transversely infinite
medium. The tunnel is modelled as a two-dimensional channel, which is long, but
finite, and open at one end to well-mixed fluid containing the passive solute. The
channel walls are permeable to the solute only. The fluid flow in the channel is
governed by the continuity and the Navier–Stokes equations together with the no-slip
boundary condition at the channel walls. The transport of solute is modelled by an
advection–diffusion equation in the channel and a diffusion–consumption equation in
the surrounding medium; these equations are coupled via the boundary conditions
at the permeable channel walls. As a first step, we take the variation in channel
half-width and length to be sinusoidal in time, with dimensionless frequency α ∼ O(1)
and asymptotically small amplitude ε. This choice of sinusoidal variation is motivated
by the fact that both the channel length and half-width will increase as the heart
expands and decrease as it contracts. By considering a parameter expansion in powers
of ε for the dependent variables we are able to determine the fluid flow within the
channel and the corresponding time-mean solute distribution within the channel and
the medium. Since the molecular diffusivity of oxygen in blood is small, longitudinal
diffusion is negligible and the dominant spreading mechanism for the solute in the
channel is due to the interaction between advection and transverse diffusion (shear
dispersion). The analysis will be restricted to the transport of solutes in liquids for
which the Schmidt number, the ratio of kinematic viscosity to molecular diffusivity,
is large. Note that the assumption of two-dimensionality is made because the analysis
is simpler, and therefore the physical mechanisms more transparent, than in the
corresponding axisymmetric model.

In § 2 the problem is formulated mathematically and a similarity solution for the
fluid flow within the channel is given. In § 3 we derive the governing equations for
the time-mean solute concentration and in § 4 these equations are solved subject to
the appropriate boundary conditions. Two particular cases are investigated in detail,
corresponding to relatively small and to large channel-wall permeability. Finally in § 5
we discuss the physiological implication of the results. We find that the fluid motion
within the channel significantly enhances the delivery of solute to the medium. Thus
the hypothesis of Horvath et al. (1995), that blood flow through patent tunnels may
be important in the efficacy of the treatment, is likely to be true.

2. Formulation
We consider a two-dimensional, rigid channel surrounded by a homogeneous

medium; see figure 1. A Cartesian coordinate system (x∗, y∗) is chosen with cor-
responding coordinate directions (x̂, ŷ). Throughout this paper asterisks denote di-
mensional quantities. The channel is assumed to be closed at one end by an idealized
compliant membrane, which prevents only axial motion, leaving motion in the ŷ-
direction completely unrestricted. This end corresponds to x∗ = 0 and is assumed not
to move in the axial direction. The channel length, b∗(t∗), varies with time, t∗. The
channel walls move along their normal direction (the ŷ-direction) in a prescribed way,
so that

y∗ = a∗(t∗) (2.1)

at the channel–medium interface. Here, a∗ is the channel half-width. The variation of
the channel half-width and length with time is assumed to be oscillatory so that

(a∗, b∗) = (a∗0, b
∗
0)a where a = (1 + ε sinω∗t∗). (2.2)
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Figure 1. Definition sketch.

The time-mean half-width and length are a∗0, b∗0 respectively, ε is the amplitude and
ω∗ is the angular frequency of the oscillations.

The channel contains a homogeneous, incompressible, Newtonian fluid, which has
velocity components (u∗, v∗) and pressure p∗. The kinematic viscosity is denoted by ν∗
and ρ∗ is the fluid density. The open end of the channel is exposed to well-mixed fluid
containing solute at concentration C∗0 and the solute concentrations in the channel
and the surrounding medium are C∗0C and C∗0θ respectively. The solute diffusivity,
D∗, is assumed to be the same in both the fluid and the medium since the tissue is
predominantly composed of water. The medium consumes solute at a constant rate
Q∗. The closed end of the channel is assumed to be impermeable to both fluid and
solute. The interfacial wall is impermeable to fluid but allows the passage of solute
with a permeability coefficient β∗.

2.1. Physiological parameter values

The following physiological parameter values are taken from the literature. The
typical radius of the laser drilled holes is 0.5 × 10−3 m (Jansen et al. 1997) and
so we take this to be the value of a∗0 in our two-dimensional model. The mean
channel length b∗0 ∼ 1× 10−2 m and the angular frequency ω∗ ∼ 2π s−1. The kine-
matic viscosity of blood ν∗ ∼ 4× 10−6 m2 s−1 and the diffusivity of oxygen in blood
D∗ ∼ 2.4× 10−9 m2 s−1 (Sharan, Aminataei & Singh 1987). The tissue is assumed to
consume oxygen at a rate Q∗C∗0θ, where Q∗ ∼ 2× 10−3 s−2 (Salathé & Wang 1980) and
the wall permeability coefficient, based on the permeability coefficient of capillaries, is
β∗ ∼ 2− 50× 10−6 m s−2 (Salathé & Wang 1980). The value of β∗ appropriate to the
laser-drilled channels is expected to be greater than this. However, there is evidence
that, after a period of about a month, the channels become lined with a layer of fibrin
thrombus which might reduce the wall permeability (Horvath et al. 1995).

2.2. Fluid flow

The fluid flow is governed by the continuity and the Navier–Stokes equations. It is
helpful to choose a frame of reference in which the channel walls are fixed and so,
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following Secomb (1978), we non-dimensionalize as follows:

t∗ = t/ω∗, x∗ = b∗ξ, y∗ = a∗η, u∗ = ω∗b∗0u, v∗ = ω∗a∗0v, p∗ = ρ∗(b∗0ω
∗)2p.

(2.3)

The dimensionless governing equations are
continuity:

∂u

∂ξ
+
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= 0, (2.4a)
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a
ξ
∂

∂ξ
+
∂

∂t

)
u+

u

a

∂u

∂ξ
+
v

a

∂u

∂η
= −1

a

∂p

∂ξ
+

1

α2a2

(
∂2u

∂η2
+ δ2 ∂

2u

∂ξ2

)
, (2.4b)

transverse momentum:(
− ȧ
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The boundary conditions are

u = ȧξ, v = ±ȧ at η = ±1. (2.5)

In the above equations, dots denote derivatives with respect to time. The two di-
mensionless parameters appearing in the governing equations for the fluid flow, in
addition to ε which appears in a(t), are the channel aspect ratio δ = a∗0/b∗0 and the
Womersley parameter α = a∗0(ω∗/ν∗)1/2. Since we are considering a long, thin channel
(corresponding to δ � 1), we neglect terms of O(δ2) in the governing equations for
the flow and seek a similarity solution of the form

(u, v, p) = (aξU, aV , a2ξ2P + P0(η)), (2.6)

where U,V and P are independent of ξ. Equation (2.4c) then shows that P is
independent of η, and (2.4a) combines with (2.4b) to give a nonlinear equation for
V (η, t) which involves P (t). Note that this similarity solution will not be valid at a
dimensionless distance of O(δ) from the channel ends. The value of α based on the
physiological parameter values given in § 2.1 is ≈ 0.6 and so we take α = O(1).

The amplitude of the channel wall oscillations is assumed small and we consider
a small-parameter expansion for the dependent variables in powers of ε (throughout
this paper c.c. denotes complex conjugate):

U(η, t) = ε[U[11](η)eit + c.c.] + ε2[(U[20](η) + c.c) + (U[22](η)e2it + c.c.)] + · · · , (2.7)

with similar expansions for V (η, t) and P (t). The quantities U[ij] are independent of
time and represent the jth Fourier coefficient of the ith-order term in the expansion of
U. The time-independent terms of O(ε2) represent the steady streaming, which results
from the convective inertia terms. Since the steady streaming Reynolds number,
Rs = α2ε2, is much less than unity we can carry out a uniform series expansion of
the governing equations (2.4a)–(2.4c) by considering successive orders of ε. In order
to determine the leading-order time-mean solute distribution we will require explicit
expressions for U[11], V [11] and the axial steady streaming U[20]. These are found to
be

U[11] =
1

2E

[
2 cosh kη − cosh k − sinh k

k

]
, (2.8a)
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Figure 2. Axial steady streaming (U[20] + c.c.) for α = 1.0, 1.2, 1.5. The channel wall is at η = 1 and
the centreline at η = 0. The flow is towards ξ = 1 close to the channel walls and is towards ξ = 0
in the centre of the channel.
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where k = αeiπ/4, E = cosh k − sinh k/k and primes are used to denote the complex
conjugate of a variable or parameter (see Secomb 1978). In figure 2 the axial steady
streaming is plotted for three values of α. The flow is towards ξ = 1 close to the
channel walls and is towards ξ = 0 in the centre of the channel.

3. Concentration equations and boundary conditions
The dimensionless governing equations for the solute concentration in the channel,

C , and in the surrounding medium, θ, are respectively(
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}
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where σ = ν∗/D∗ is the Schmidt number and λ = a∗0
2Q∗/D∗ is the ratio of the diffusion

timescale to the consumption timescale in the medium. Based on the parameter values
in § 2.1 we have that σ ∼ 1.6× 103 and λ ∼ 0.2. The O(δ2) terms in equations (3.1a)
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and (3.1b) are neglected, as they are in equations (2.4); hence the effects of longitudinal
diffusion are neglected here.

We shall determine the time-mean solute concentration in the channel and the
surrounding medium. Consider the time average of equation (3.1a). Since the time-
independent velocity is O(ε2) the ratio of the steady advection to the transverse
molecular diffusion in (3.1a) is O(α2σε2). We thus define the mean Péclet number, P̃ ,
based on the channel half-width, to be

P̃ = α2σε2. (3.2)

Since the problem is symmetric about the channel centreline, we need only solve
the problem in the upper half-η-plane. (Hall & Papageorgiou (1999) have found a
rich set of asymmetric solutions to the flow problem, but these arise only if the
Reynolds number exceeds a critical value, which depends on the dimensionless wall
amplitude, and is outside our range of interest.) The boundary conditions for the
solute concentration are

κ

a

∂C

∂η

∣∣∣∣
η=1

= −(C|η=1 − θ|η=1) =
κ

a

∂θ

∂η

∣∣∣∣
η=1

,
∂C

∂η

∣∣∣∣
η=0

= 0, θ → 0 as η →∞.
(3.3a–c)

The dimensionless parameter κ = D∗/(a∗0β∗) is the ratio of the timescales of uptake
and diffusion and its value lies between O(10−1) and O(1). Condition (3.3a) describes
continuity of solute flux at the channel–medium interface and allows jumps in the
solute concentration. Equation (3.3b) is the zero-flux condition at the centre of the
channel. Equation (3.3c) states that the solute concentration in the medium decays
away from the channel walls in the transverse direction.

To determine the solute concentration completely, it is necessary to specify end
boundary conditions at ξ = 0 and ξ = 1. We assume that there is no flux of solute
through the walls at ξ = 0 so that

∂C

∂ξ
= 0 for 0 6 η 6 1

∂θ

∂ξ
= 0 for η > 1

 at ξ = 0. (3.4a, b)

The conditions at ξ = 1 are less straightforward. Much of the work on shear
dispersion assumes that, when advection dominates longitudinal molecular diffusion,
a one-dimensional advection–diffusion–reaction equation is valid far downstream
from a change in conditions. Since this one-dimensional equation is far simpler than
the corresponding full governing equations, it is natural to extend its use to the channel
ends, although it is not a valid approximation there. However, by determining the
appropriate boundary conditions at the channel ends it is possible to ensure that far
downstream of a change in conditions the solutions of the one-dimensional equation
are as close as possible to the solutions of the full equations. Smith (1988) considered
the transport of a dilute reactive solute in a plane, steady, parallel flow in a flow
reactor, when advection dominates molecular diffusion. In order to determine the
appropriate boundary conditions for the one-dimensional model accurately, it was
necessary to solve the full three-dimensional concentration equations.

In this problem, we do not determine the velocity profile at the channel entrance
and so we cannot determine the full two-dimensional concentration profile in this
region. Instead we impose a condition at the channel entrance that is independent of
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η as follows. The ratio of steady advection to mean longitudinal diffusion is O(P̃ /δ2)
so that the dominant mechanism for solute transport at the channel entrance is
advection. We make the approximation that the concentration at ξ = 1 is given by
C = 1. During inflow, the channel draws in well-mixed fluid and so this condition is
accurate. During outflow, however, the fluid will leave the channel as a jet and the
concentration of solute at the exit will thus be determined by the concentration in
the fluid that was previously upstream. However, we assume that the error due to
the imposed condition will be exponentially small outside a thin boundary layer (see
Hydon 1991). As we will see below, it is not necessary to impose a boundary condition
on the tissue concentration at ξ = 1. We impose that the solute concentration in the
medium responds accordingly.

In § 4 we shall determine how the fluid flow enhances the solute flux into the
channel. The solute flux at the channel entrance , F∗, is given by

F∗ = −2

∫ a∗

0

(u∗C∗ − D∗C∗x∗) dy∗
∣∣
x∗=b∗

= −2
C∗0ν∗b∗0
a∗0

α2

∫ 1

0

(
a2ξUC − δ2

σα2
Cξ

)
dη

∣∣∣∣
ξ=1

. (3.5)

Since we are neglecting O(δ2) terms, we have

S =
F∗a∗0

2C∗0ν∗b∗0
= −α2

∫ 1

0

a2ξUC dη
∣∣
ξ=1
, (3.6)

where S is a measure of the effect of the fluid flow on the solute transport. The
time-mean component of S is denoted by Sm.

3.1. Time-mean concentration equations

To determine the leading-order time-mean governing equations for the solute con-
centrations in the channel and the medium we expand C and θ in powers of ε as
follows:

C(η, ξ, t) = C(η, ξ) + ε[C [11](η, ξ)eit + c.c.] + O(ε2), (3.7a)

θ(η, ξ, t) = Θ(η, ξ) + ε[θ[11](η, ξ)eit + c.c.] + O(ε2). (3.7b)

We then consider equations (3.1a) and (3.1b) at various orders of ε. From equation
(3.2) with α = O(1), we have σ ∼ O(P̃ ε−2). Equation (3.1a) at O(ε) gives

C [11] = i[− 1
2
η + V [11]]

∂C
∂η

+ iξ[− 1
2

+U[11]]
∂C
∂ξ
. (3.8)

This expression for C [11] is then substituted into equation (3.1a) at O(ε2), the time
average is taken, and the following governing equation for C is obtained:

ξŨ∂C
∂ξ

+ Ṽ∂C
∂η

=
1

P̃

∂2C
∂η2

, (3.9a)

where Ũ = U[20] − iU[11]
η

′
(−η/2 + V [11]) + c.c. and Ṽ = V [20] + i(1/2− V [11]

η

′
)(−η/2 +

V [11]) + c.c. In order that the radial diffusion term enters the governing equation at
this order we suppose that ε� P̃ � ε−1.
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From equation (3.1b) we obtain the following equation for Θ:

∂2Θ

∂η2
− λΘ = 0, (3.9b)

which has solution

Θ = A(ξ) exp (−λ1/2η), (3.10)

where A(ξ) is determined from the interfacial boundary condition (3.3a) and depends
on C.

We now proceed to solve (3.9a) for C subject to the boundary conditions (3.3a, b),
(3.4a) and the condition C = 1 at ξ = 1. Significant analytical progress may be
made by assuming that P̃ is much less than 1. Thus we consider the asymptotic
regime corresponding to ε� P̃ � 1 so that the Schmidt number is in the range
ε−1 � σ � ε−3. This requirement of large Schmidt number is consistent with the
value of the Schmidt number estimated for oxygen in blood; see § 2.1.

3.2. Cross-sectional averaging

When P̃ � 1, cross-channel diffusion dominates and acts to equilibrate the concen-
tration of solute across the channel so that C may be decomposed into a component
independent of η and a small fluctuation:

C = Ĉ(ξ) + P̃C(1)(ξ, η), (3.11)

where, for any f, f̂ =
∫ 1

0
fdη and Ĉ(1) ≡ 0 by definition (P̃C(1) here includes terms of

all orders > 1 in P̃ ). Substitution of (3.11) into (3.9a) gives

ξŨ
(
∂Ĉ
∂ξ

+ P̃
∂C(1)

∂ξ

)
+ P̃Ṽ∂C(1)

∂η
=
∂2C(1)

∂η2
. (3.12)

Integration of (3.12) with respect to η between 0 and 1 gives

P̃ ξ̂ŨC(1)
ξ + P̃̂̃VC(1)

η =
∂C(1)

∂η

∣∣∣∣
η=1

, (3.13)

where the terms on the left-hand side represent the effects of shear dispersion. To

determine the governing equation for Ĉ it is necessary to compute the concentration
fluctuation, C(1), which is found by considering the O(1) terms in equation (3.12):

C(1) = ξ
∂Ĉ
∂ξ

∫ η

F dη where F =

∫ η

0

Ũ dη. (3.14)

We also require ∂C(1)/∂η at η = 1, which is, from the interfacial boundary condition
(3.3a) and to leading order in ε,

∂C(1)

∂η

∣∣∣∣
η=1

= −∆
P̃
Ĉ where ∆ =

λ1/2

1 + κλ1/2
. (3.15)

Substitution of expressions (3.14) and (3.15) into equation (3.13) gives the following
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ordinary differential equation in ξ for Ĉ:

ξ2 ∂
2Ĉ
∂ξ2

+ 2ξ
∂Ĉ
∂ξ
− γĈ = 0, where γ =

∆

P̃ 2

1∫ 1

0

F2 dη

. (3.16)

Physically, γ is a measure of the degree of solute uptake relative to dispersion.

Note that the solution for Ĉ will not be valid at distances of O(P̃ ) from the channel
entrance since in this region the axial advection term in equation (3.9a) is the same
order as the transverse diffusion term. There, transverse diffusion does not dominate
and equilibrate the concentration of solute across the channel so the decomposition
for C given by equation (3.11) is not valid in that region.

4. Results
It is straightforward to solve equation (3.16) and the form of the solution depends

on γ. For asymptotically small solute uptake, corresponding to γ � 1, the trivial

solution is that Ĉ = 1 to leading order. Thus in the limit γ → 0 the solution for an

impermeable channel is recovered. For γ = O(1) the dependence of Ĉ on ξ is algebraic
and the algebraic exponent is the positive root, m1, of m2 + m− γ = 0 (in order that
the end boundary condition at ξ = 0 be satisfied it is also necessary that m1 > 1, i.e.
γ > 2). The most physiologically realistic limit, however, corresponds to γ � 1 and it
is this limit that we consider in detail here.

When γ � 1, we have that Ĉ ≡ 0 except at small distances from the channel
entrance. To determine the solute distribution in this region we introduce a stretched
coordinate, X̂, such that 1 − ξ = X̂γ−1/2. Since we are considering distances greater
than O(P̃ ) from the channel entrance, we require P̃ � γ−1/2 � 1, which corresponds
to ∆1/2 � 1.

Equation (3.16) then reduces, at leading order, to ĈX̂X̂ − Ĉ = 0, the solution of

which, satisfying Ĉ(1) = 1 and Ĉ(∞) = 0 is Ĉ = e−X , so in original variables

Ĉ = exp

−
1

P̃

1√∫ 1

0

F2 dη

√
λ1/2

1 + κλ1/2
(1− ξ)

 . (4.1a)

From (3.11) together with boundary condition (3.3a), the leading-order concentration
in the medium is

Θ =
1

1 + κλ1/2
Ĉ exp

{
λ1/2(1− η)

}
. (4.1b)

To determine how the solute flux entering the channel, the solute dispersion along
the channel and the solute concentration in the medium depend on the governing
parameters, we consider two limiting cases: κ � 1, λ = O(1) and κ = O(1), λ � 1,
which correspond to relatively small and to large wall permeability respectively.

4.1. Small wall permeability

When κ � 1 and λ = O(1), the leading-order expressions for the time-mean compo-
nent of the solute flux at the channel entrance, Sm, and the solute concentrations in
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the channel and the medium are respectively

Sm =
1

σκ

∫ 1

0

(
i

2
V [11]′F+ c.c.

)
dη√∫ 1

0

F2 dη

, (4.2a)

Ĉ = exp

−
1

σε2κ1/2

1

α2

√∫
0

1

F2dη

(1− ξ)

 , (4.2b)

Θ =
1

κλ1/2
Ĉ exp

{
λ1/2(1− η)

}
. (4.2c)

From (4.2c), the medium concentration is an O(1/κ) quantity and decays over an
O(1) lengthscale in the transverse direction (since λ = O(1)). Thus in this regime,
corresponding to relatively small wall permeability, the quantity of solute reaching

the medium is asymptotically small. From (4.2b), we note also that Ĉ does not depend
on λ and hence does not depend on the consumption, Q∗, since the wall permeability
is sufficiently small that the solute concentration in the channel does not respond to
variations in the solute consumption in the medium. Moreover, Sm does not depend
on Q∗, but rather is limited by the permeability, β∗.

Next we investigate how the quantity of solute entering the channel varies with
the governing parameters. In figure 3(a), Sm is plotted as a function of β∗ for several
values of α. As α increases, Sm increases as more solute is drawn into the channel
by the fluid flow. Since σκ does not depend on the diffusivity, D∗, we see that Sm is
independent of D∗. Increasing the permeability, β∗, results in Sm increasing. Solute is
drawn into the channel during inflow and as β∗ increases more of the solute is taken
up by the medium. Thus, less solute is available to be expelled during outflow so that
the time-mean solute flux into the channel increases.

The degree of dispersion of solute along the channel depends on the frequency

parameter, α, and in figure 3(b), Ĉ is plotted against ξ for several values of α
(κ = 0.5, σ = 103, ε = 10−2). The concentration of solute at a given ξ increases as
α increases, corresponding to the increase in the solute flux with α, and the solute
penetrates further into the channel, due to the increased effects of shear dispersion.
Since σ ∝ 1/D∗ and κ ∝ D∗, we see from (4.2b) that the solute concentration in the

channel depends on
√
D∗. Increasing the diffusivity, D∗, causes Ĉ, at a given ξ, to

decrease; see figure 4, where Ĉ is plotted against ξ for several values of D∗. It can
clearly be seen that the solute penetration into the channel decreases as D∗ increases.
As D∗ increases, the fluctuations in the solute concentration across the cross-section
are smaller (as diffusion more rapidly equilibrates the concentration) and the effects
of shear dispersion are reduced. Finally, from (4.2b) we see that, since κ ∝ 1/β∗,
increasing β∗ results in Ĉ decaying more rapidly in the longitudinal direction so that
the solute does not penetrate as far into the channel. Boundary uptake causes a
depletion of solute in the channel and since the boundary tends to be the region of
highest shear, the remaining solute experiences, on average, a reduced rate of shear
dispersion (Smith 1983).
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Figure 3. (a) Solute flux, Sm, versus wall permeability, β∗, for several values of α. Sm increases with

β∗ and α. (a∗0 = 10−3 m, ν∗ = 10−6 m2 s−1.) (b) Solute concentration in the channel, Ĉ, versus ξ for

several values of α. Ĉ at a given ξ increases as α increases. (κ = 0.5, σ = 103, ε = 10−2.)

Since Θ ∝ Ĉ, the quantity of solute reaching the medium is enhanced as α
increases. The medium concentration, at any point, decreases with increasing D∗,
but the lengthscale in the transverse direction over which it decays increases (since
λ ∝ 1/D∗). Essentially, increasing the diffusivity means that the solute spreads over a
wider region in the medium. To determine how the medium concentration varies with
β∗, we consider, for convenience, the medium concentration at η = 1. Increasing β∗

causes the concentration to decay more rapidly in the axial direction (since Θ ∝ Ĉ),
but also results in an increase in the magnitude of Θ; see figure 5(a), where Θ|η=1 is
plotted versus ξ for several values of β∗. Thus, near the channel entrance, Θ increases
as β∗ increases, but further into the channel the opposite is true. Increasing Q∗ causes
the solute concentration in the medium to decrease and to decay more rapidly in the
transverse direction, as expected.
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Figure 4. Solute concentration in the channel, Ĉ, versus ξ for various diffusivity, D∗. Channel
concentration at a given ξ decreases as D∗ increases. (α = 1, ν∗ = 10−6 m2 s−1, a∗0 = 10−3 m,
β∗ = 2× 10−6 m s−2, ε = 10−2.)

4.2. Large wall permeability

In the limit of large wall permeability, corresponding to κ = O(1) and λ � 1, we
have

Sm = λ1/2

∫ 1

0

(
i

2
V [11]′F+ c.c.

)
dη√∫ 1

0

F2 dη

, (4.3a)

Ĉ = exp

−
λ1/4

σε2

1

α2

√∫ 1

0

F2 dη

(1− ξ)

 , (4.3b)

Θ = Ĉ exp
{
λ1/2(1− η)

}
. (4.3c)

The functional dependence of Sm, Ĉ and Θ on α is as in § 4.1. However, in contrast
to § 4.1, here the medium concentration is O(1) over an O(λ1/2) lengthscale in the

transverse direction. Moreover, Sm, Ĉ and Θ are independent of the permeability, β∗,
in this regime, i.e. the permeability is sufficiently large that it is no longer a limiting
factor.

Since the wall permeability is now relatively much larger, the channel concentration
is able to respond to variations in Q∗ in the medium and we see that the time-mean

solute flux, Sm, and the solute concentration in the channel, Ĉ, depend on the solute
consumption, Q∗, in the medium. As Q∗ increases so too doesSm as more of the solute
entering the channel during inflow is consumed in the medium so that less is expelled
during outflow. The quantity of solute in the channel and the degree of penetration

into the channel both decrease as Q∗ increases; see figure 5(b) where Ĉ is plotted
against ξ for several values of Q∗. Increasing Q∗ results in the channel concentration
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Figure 5. (a) Medium concentration at the interface, Θ|η=1, versus ξ for several values of the wall
permeability, β∗. (σ = 103, λ = 0.2, α = 2, D∗ = 10−9 m2 s−1, a∗0 = 10−3 m.) (b) Solute concentration

in the channel, Ĉ, versus ξ for several values of the solute consumption, Q∗. Ĉ at a given ξ decreases
as Q∗ increases. (κ = 0.5, σ = 103, ε = 10−2, α = 2, a∗0 = 10−3 m, D∗ = 10−9 m2 s−1.)

fluctuation decreasing so that the effects of shear dispersion are reduced. As before,
increasing Q∗ results in the solute concentration in the medium decreasing.

5. Conclusion and physiological applicability
We have shown that the steady streaming generated by the pulsations of a finite-

length channel enhances the flux of solute into the open end of the channel, the
dispersion of solute along the channel and the corresponding solute concentration in
the surrounding medium. The solute disperses along the channel due to the interaction
between advection and transverse diffusion. This mechanism becomes more effective
as the molecular diffusivity decreases, since the channel concentration fluctuation is
then relatively larger, and shear dispersion is more effective.

We considered in detail two limiting cases. In the first, corresponding to relatively
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small wall permeability, the medium concentration is found to be asymptotically small.
The wall permeability is a limiting factor in this regime and the solute consumption
in the medium has no effect on the solute dispersion in the channel or the solute flux
entering the channel. In the second regime, corresponding to large wall permeability,
the medium concentration is O(1) so that the delivery of solute to the medium is
more effective. The wall permeability is no longer a limiting factor and so the solute
consumption in the medium now impinges on the solute flux entering the channel and
the solute dispersion in the channel. In particular, increasing the solute consumption
causes the longitudinal dispersion of solute in the channel to decrease.

Physiologically, the second regime is the most interesting. We estimate that κ lies
between O(10−1) and O(1). However, these values for κ are based on the permeability
coefficient for capillaries and we might expect the walls of the laser-created channels
to be more permeable than capillary walls so that the value of κ appropriate to the
laser-drilled tunnels is smaller. We also estimate λ = O(10−1) and hence the limit
κ = O(1), λ� 1 is the most appropriate. The concentration of solute in the medium
is then an O(1) quantity and increasing the frequency of the channel pulsations
enhances the quantity of solute delivered to the medium. From (4.3a), we find that
when α = 1, Sm ≈ 0.0048λ1/2, and when α = 2, Sm ≈ 0.018λ1/2 so that doubling
the frequency of the oscillations leads to the quantity of solute reaching the tissue
increasing by a factor of four. Care must be taken when extrapolating the results of
our two-dimensional model to draw conclusions about the delivery of oxygen to the
heart tissue via the laser-drilled channels. However, the results of our model indicate
that the blood flow within the channel, generated by the channel wall motion, may
be important in the efficacy of TMLR.
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